Translate

Saturday, February 8, 2014

Fourth Day

        Hi it's Daniel,  on Friday we got our first quiz back, hopefully everyone did well, then we continued onto Permutations part one and two.  In part one, we learned how to permute (rearrange) a set of objects to find out all possible ways of rearranging them with restrictions, and that we CANNOT use the formula nPr = n! / (n-r) when there no restrictions , and that we use the dashed method _ . _ . We learned how to solve for n when the value of nPr is given. At the end of part one we checked our understanding by doing six questions that were given in the lesson booklet.

        In part two, we continued to further our understanding of using the formula nPr = n! / (n-r) , we learned to use the formula n! / a!b!c!d! when trying to find the number of distinguishable permutations of a word given using all of its letters, like REFERRED. n would be equal to the amount of letters in the word which in this case would be 8, a!b! Etc would be any letter in that word that is repeated at least once which would be E=3 R=3, the equation would look like and be solved like this,
8! / 3!3!, then expand 8!, (8)(7)(6)(5)(4)(3)! / 3!3!, cross out both denominators, then 3! And 6 from the numerators. Then the equation will be left like this to calculate the final answer, (8)(7)(5)(4) = 1120. We were sadly notified that this formula WILL NOT be on the formula sheet for the provincial exam.

      At the end of class we were given a booklet do do questions 1-20 but omit questions 12, 13, and 14. That pretty much sums everything up. Have a good weekend everyone.

No comments:

Post a Comment